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LETTER TO THE EDITOR

Operator identities, representations of algebras and the
problem of normal ordering '

Alexander Turbinert} and Gerhard Post

Department of Applied Mathematics, University of Twente, PO Box 217, 7500 AE Enschede,
The Netherlands

Received 30 November 1993

Abstract. Families of operator identities related to certain powers of positive root generators of
(super) Lie algebras of first-order differential operators and g-deformed algebras of first-order
finite-difference operators are presented. It is shown that those identities once rewritten in terms
of ¢reationfannihilation operators lead to a simplification of the problem of the normal ordering
in the second quantization method. .

The method of the second quantization is one’of the main tools in quantum field theory
and statistical mechanics. One of the tedious problems appearing in applications of this
method is the problem of normal ordering. This letter is devoted to a description of certain
infinite families of relations between creation/annihilation operators, which can simplify the
problem of the normal ordering. Those relations occur as a consequence of the existence
of finite-dimensional representations of semi-gimple Lie algebras. .

The following operator identity holds

4
dx
The proof is straightforward: .

]

(I = (228, — nx)"! = X2 F2gn 3; n=012,.... - ¢))

(i) the operator (J;)"*! annihilates the space of all polynomials of degree not higher
than n, P,(x)} = Span{x’ : 0 < i < n};

(ii) in general, an (n + 1)th-order linear differential operator annihilating P, (x) must
have the form B(x)ag"*l, where B(x) is an arbitrary function and

(iii) since (J})** is a graded operator, deg(/}) = +1§, deg(J )" = n + 1, hence
B(x) = bx?+2 while clearly the constant b == 1.

It is worth noting that taking the degree in (1) different from (n + 1), the left-hand side in
{1) will contain immediately all derivative terms from zero up to (n + 1)th order.

The identity has a Lie-algebraic interpretation. The operator (/') is the positive-root
generator of the algebra si; of first-order differential operators (the other si;-generators are
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§ So J maps x* to a multiple of x*+1.
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J? = x3, — n/2,J; = 8,). Correspondingly, the space P,(x) is nothing but the (n + 1)-
dimensional irreducible representation of sl3. The identity (1) is a consequence of the fact
that (J;F)**! = 0 in matrix representation.

Another Lie-algebraic interpretation of (1) is comnected with occurrence of some
relations between the elements of the universal enveloping algebra of the one-dimensional
Heisenberg algebra {P, @, 1}. Once [P, @] =1, then:

(QZP nQ)n+l Q2n+2Pn+i n= 0, 1’ 2, . (2)
Now let us introduce generators @ = 2V/2P and at = 2/2Q. Then (2) takes the form
(atata — 2nat )yt = (@T)P gt n=0,1,2,.... (3)

Definitely, one can interpret the operators gt, a as creationfapnihilation operators,
respectively. One can name (3) the first ordering formula. Of course, those operators
can be realized in the standard way: a* =8, +x and ¢ = 3, — x.

" There exist other algebras of differential or finite-difference operators (in more than one
variable), which admit a finite-dimensional representation. This leads to more general and
remarkable operator identities and hence to ordering formulae.

The Lie-algebraic interpretation presented above allows us to gereralize (1) for the
case of differential operators of several variables, taking appropriate degrees of the
highest-positive-root generators of (super) Lie algebras of first-order differential operators,
possessing a finite-dimensional invariant sub-space (see e.g. [1]). First we consider the cage
of sl;. There exists a representation of sI3(C) as differential operators on C2. One of the
generators is

J,} () =x%9, + xXydy — nx.

The space P,(x, ¥) = Span{x’y/ : 0 < { + j < n} is a finite-dimensional representation for
si3, and due to the fact (J}(n))**! = 0 on the space P.(x, ¥), hence we arrive at

I k=n-+1
(3 = (228 + 238, —nx)*H = Y ("'{l)xm‘z"‘y"a;'“"‘a;‘. @
k=0

This identity is valid for y & C (as described above), but also if y is a Grassmann variable,
ie. y* = 0f. In the last case, J}(n) is a generator of osp(2, 2), see [1].
In general taking sl; instead of sis, the following operator identity holds

I r+l
Iyt = (x1 > s, —n))

m=1

=xtt 3 ol ol xfajiah . ok )
Sttt

where C""'1 ;. are the generalized binomial (multinomial) coefficients. If x € C* then
J,f_lz(n) is a generator of the algebra sl..1(C) {11, while some of the variables x’s are

1 In this case just two terms in the left-hand side of (4) survive.
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" Grassmann ones, the operator J, "‘z(n) is a generator of a certain soper Lie algebra of first-
order differential operators. The operator on the left-hand side of (5) annihilates the linear
space of polynomials P, (x;, %2, ..., Xg) = Span{x{'x3" ... x{* : 0 < i+ jo+...+ je < n}.

Denoting O, = x, and P, = 3,_, one can make the following statement. Once the
operators @,,, P, are the generators of Z-dimensional Heisenberg algebra:

(P Q11 = bt
then

k n+1 - . s » a -
(QI Z(Qum—n)) =0 3 o solof...ofpipk. B}

m=1 Sttt il
_ (©6)
(cf (2)). Introducing new operators @, = 22P, and o} = 2'2Q,,, we arrive at
+1
( Z(a O — zn))
m=1
=@y 3 ot @ehr . @hreled . al ()

Atiatertie=nt]

(cf (3)). Asbefore, one can consider a standard representation of the operators a;' = Oy, FXp,
ay = 8, — x; as creation/annihilation operators, respectively. One can name (7) the kth
ordering formula.

The above-described family of operator identities (1) can be generalized for the case of
finite-difference operators with the Jackson symbol, D, (see e.z. [2])

f (x) flg*x)
—g9)x

instead of the ordinary derivative. Here, g is an arbitrary complex number. The following
operator identity holds

Df(x) = + flg**)D;

(T = (2D, — {njx)™! = g etiiprtl 5 20,1,2,... ®

(cf (1)), where {n} = (1 — g*)/(1 — ¢°) is the so-called g-number. The opetator in the
right-hand side annihilates the space P,(x)}. The proof is similar to the proof of the identity
( 1)

From an algebraic point of view the operator J* is the generator of a g-deformed
algebra s1,(C), of first-order finite-difference operators on the line: J? = xD~#, J; =D,
where #i = {n}{rn + 1}/{2n + 2} (see [3] and also [1]), obeying the commutation re]ations

PP =i '
¢iti - f‘f* =—(g*+1J° ©)
Pit-adiP =7

(j’s are related to J°s through some multiplicative factors). The algebra (Q)has the linear
space P, (x) as a finite-dimensional representation.
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Evidently, the identity (8) has a more general meaning like the identity (1). Once two
operators P, O obey a condition P — g0 P = 1, then

(QZ}S —{n} Q)u+l = q2n{n+1) Q2u+2ﬁ?l+1 r=01,2.., (10

(cf (2). '

An attempt to generalize (4), replacing continuous derivatives by Jackson symbols,
immediately leads to the necessity to introduce the quantum plane and g-differential calculus
4]

xy = gyx _
Dix =14g"xD:+(g°~1)yD,  D:y=gqyD, an
Dyx = gxD, Dyy = 14+¢%yDy
DD, = g 'D,D,.
The formulae analogous to (4) have the form
(3 @) = (¥ Dy +xyDy — (nhxy*H
ket 2 n+1 |
Z q:..’n —a{k=23+k(k—-1) ( ) x2ﬂ+2—kykDg+I—&D§7 (12)
k=0 q
where
ny _ {n}! .
(k)q = O =i {n} = {1H2}...{n}

are the g-binomial coefficient and g-factorial, respectively. Like all previous cases, if y € C,
the operator le(n) is one of generators of ¢-deformed algebra si3(C), of finite-difference
operators, acting on the quantum plane and having the linear space P,(x, y) = Span{x’y/ :
0 £ {4+ € n} as a finite-dimensional representation; the Jeft-hand side of (12) annihilates
Prlx, ). If y is Grassmann variable, le (n) is a generator of the g-deformed superalgebra
osp(2, 2), possessing finite-dimensional representation (see e.g. [11).

As has been done before (see (2), (3), (6), (7}, (10)}, the identity (12} can be rewritten
in an abstract form replacing x, y and Dy, D, by abstract operators obeying relations (11).

Introducing a quantum hyperplane [4], one can generalize the whole family of the
operator identities (5)-(6) replacing continuous derivatives by finite-difference operators
and then by abstract operators, obeying a certain g-deformed Heisenberg algebra,

One of us (AT) wants to express a deep gratitude to Professors M Gromov, L Michel,
R Thom and THES, Bures-sur-Yvette, and to Professor F Pham and the University of Nice
for kind hospitality and their interest in the present work, and also to Professor R Askey
for valuable discussion of operator identities. This work was supported in part by a CAST
grant of the US National Academy of Sciences.



Letter to the Editor L13

References

m

21
31

L)

Turbiner A V 1992 Lie alpebras and linear operators with invariant subspace Preprint IHES-92/95 (1993
Lie alpebras, cohomologies and new findings in quantum mechanics Contemporary Mathematics (AMS)
ed N Kamran and P Olver (to appear))

Exton H 1983 Q-Hypergeametrical functions and applications (Chichester: Ellis Horwood)

Ogievetsky O and Turbiner A 1991 si(2, R); and quasi-exactly-solvable problems Preprint CERN-
TH:6212/91

Wess J and Zumino B 1990 Covariant differential calcuelus on the quantum hyperplane Nucl. Phys. B 18
302 (Proc. Suppl.)

Zumino B 1991 Mod, Phys. Lett. A 6 1225



